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Abstract: Intense monsoonal rain is one of the major triggering factors of floods and mass movements
in Nepal that needs to be better understood in order to reduce human and economic losses
and improve infrastructure planning and design. This phenomena is better understood through
intensity-duration-frequency (IDF) relationships, which is a statistical method derived from historical
rainfall data. In Nepal, the use of IDF for disaster management and project design is very limited.
This study explored the rainfall variability and possibility to establish IDF relationships in data-scarce
situations, such as in the Central-Western hills of Nepal, one of the highest rainfall zones of the country
(~4500 mm annually), which was chosen for this study. Homogeneous daily rainfall series of 8 stations,
available from the government’s meteorological department, were analyzed by grouping them into
hydrological years. The monsoonal daily rainfall was disaggregated to hourly synthetic series in a
stochastic environment. Utilizing the historical statistical characteristics of rainfall, a disaggregation
model was parameterized and implemented in HyetosMinute, software that disaggregates daily
rainfall to finer time resolution. With the help of recorded daily and disaggregated hourly rainfall,
reference IDF scenarios were developed adopting the Gumbel frequency factor. A mathematical
model [i = a(T)/b(d)] was parameterized to model the station-specific IDF utilizing the best-fitted
probability distribution function (PDF) and evaluated utilizing the reference IDF. The test statistics
revealed optimal adjustment of empirical IDF parameters, required for a better statistical fit of
the data. The model was calibrated, adjusting the parameters by minimizing standard error of
prediction; accordingly a station-specific empirical IDF model was developed. To regionalize the IDF
for ungauged locations, regional frequency analysis (RFA) based on L-moments was implemented.
The heterogeneous region was divided into two homogeneous sub-regions; accordingly, regional
L-moment ratios and growth curves were evaluated. Utilizing the reasonably acceptable distribution
function, the regional growth curve was developed. Together with the hourly mean (extreme)
precipitation and other dynamic parameters, regional empirical IDF models were developed. The
adopted approach to derive station-specific and regional empirical IDF models was statistically
significant and useful for obtaining extreme rainfall intensities at the given station and ungauged
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locations. The analysis revealed that the region contains two distinct meteorological sub-regions
highly variable in rain volume and intensity.

Keywords: Nepal; monsoonal rain; data scarcity; intensity-duration-frequency; L-moment

1. Introduction

1.1. Background

Nepal has experienced numerous natural hazard events over the past resulting in enormous
economic losses and thousands of causalities, compounding the country’s already high level
of poverty [1–5]. The frequent natural and human-induced disasters are due to its fragile
geomorphology, active tectonics, and unplanned human activity on steep slopes combined with
climate extremes [3,4,6–8]. Flooding and landslides occur frequently, mostly triggered by extreme
precipitation or by earthquakes, as evidenced by the 2015 Gorkha earthquake. The importance of
human interventions, such as road construction, on mass movements was at best underestimated and
largely neglected by researchers and authorities in Nepal [9]. Landslides are caused by a number of
underlying natural and human factors including slope aspect, gradient, soil type, land cover (changes),
proximity to rivers and land use (i.e., road construction, quarrying) and most often triggered by
rainfall or earthquakes [8,10]. Rainfall, while critical to maintaining ecosystem services and supporting
livelihoods, is thus a triggering factor that needs to be understood and managed in order to reduce
impacts due to flooding and mass movements and erosion. Reducing and managing climate-induced
disaster-risk (e.g., damage due to floods and landslides) relies on knowledge of the frequency and
intensity of rainfall events [11]. Extreme precipitation-induced pluvial flood and shallow landslide
disaster management requires the establishment of intensity-duration-frequency (IDF) relationships of
extreme events in order to formulate better design guidelines for the development of infrastructure so
as to reduce impacts due to disaster-risk, and save lives, property and ecosystems [12].

However, inadequate rainfall data continue to hamper the establishment of reasonable IDF
relationships [13–15]. Researchers have realized that the design of water resources projects, the
management of storm water runoff and disaster mitigation planning with scarce and insufficient
data are always a challenge [13,16,17]. The situation is even more challenging in the least-developed
countries such as Nepal. In Nepal, the Department of Hydrology and Meteorology (DHM) is the
government organization responsible for meteorological instrumentation and maintaining the climate
variable database including rainfall. DHM has reported that there is no instrumentation for measuring
fine-scale rainfall (e.g., hourly, sub-hourly precipitation) nor did it develop any systematic IDF
relationships for the country.

This research explored the possibility of establishing an IDF relationship in the data-scarce
environment of Nepal and developed an empirical IDF model to better estimate extreme rainfall events
at some fixed duration of time and recurrence interval for the Panchase region in the Central-Western
Hills of Nepal, a region with one of the highest annual rainfall amounts (between 4000–5000 mm,
mean = 2984.40 mm, standard deviation (SD) = 1497.60). The objectives of the study were to develop
monsoon season IDF relationships for the low-resolution rainfall data recording situation followed
by the development of location-specific empirical IDF models, and to demonstrate the application of
IDF for ungauged locations. For this purpose, the recorded daily and disaggregated hourly rainfall
series were the main data sources. Using the IDF, we can better understand the short- and long-term
rainfall intensity during the monsoon season that triggers mass movements and other hazards induced
by intense rainfall in this region. Furthermore, the IDF relationship can be used in water resources
management and infrastructure planning and design.
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1.2. Rationale

The importance of rainfall and IDF relationships in addressing extreme precipitation-induced
hazards such as mass-movement has been emphasized by many researchers [18–20]. IDF curves
are also the graphical representation that summarizes the important statistical properties of extreme
precipitation events [21]. First established in 1932 by Bernard [17], IDF is a statistical relationship
of the intensity, duration and frequency of rainfall derived from historical rainfall data [13,16,22].
Since then, many different sets of relationships have been constructed for different parts of the
world [13,16,17,22–25].

In the literature there are several functions to establish IDF relationships (e.g., [16,22,26]).
Chen [26] derived a generalized IDF relationship for any location in the United States using three
basic rainfall depths (e.g., 1 h 10-year, 24 h 10-year, and 1 h 100-year rainfall depth). Baghirathan
and Shaw [27] and Gert et al. [28] proposed regional IDF formulae for ungauged areas while
Kothyari and Garde [29] used daily rain and two-year return period to establish the IDF relation
in India. Furthermore, Koutsoyiannis et al. [22] proposed a mathematical approach to formulate IDF
relationships followed by the construction of IDF curves utilizing point information of long-term
historical rainfall time series in the context of geographical variability and the regionalization of the
IDF model.

The concept of regional IDF relationships was executed by Yu and Chen [30] and Madsen et al. [31]
who examined regression techniques, while Willems [32], Yu et al. [33] and Langousis and
Veneziano [19] applied a scaling method and developed regional IDF curves. Dalrymple [34]
proposed a regional frequency analysis (RFA) method for pooling various data samples, also known
as the index-flood procedure in hydrology [35]. Hosking et al. [36] studied the properties of a
probability-weighted moments (PWMs) method based on L-moment, and Hosking and Wallis [11]
showed the application L-moments for the RFA. L-moments are an efficient tool used to detect the
homogeneous regions, to select suitable regional frequency distribution, and to predict extreme
precipitation quantiles at a region of interest. The IDF relationship if regionalized can minimize
computational time and effort to obtain the IDF curves for areas where rainfall gauging stations are
not installed.

In order to establish IDF relationships in data-scarce situations, researchers need to disaggregate
commonly available daily rainfall data. They have, therefore, developed methods for utilizing
historical statistical information from commonly available daily rainfall to synthetically generate
fine time-resolution rainfall series [13,37–44]. Stochastic simulation tools generate fine timescale
synthetic rainfall series from coarser resolution, preserving similar statistical properties [37,39–41,45].

Nepal as a whole is dominated by S-E monsoon [46], where topography has a considerable
effect on the rainfall patterns. There are four distinct hydrological seasons: pre-monsoon (April and
May: AP), monsoon (June to September: JJAS), post-monsoon (October and November: ON) and
winter or dry period (December to March: DJFM) in the country [46]. The monsoonal rainfall is highly
variable over the country (~1000 mm–~4500 mm) and is intense in nature where more than 80% of the
annual rainfall occurs in the 4 months of the monsoon [18,47], resulting in landslides, debris flows,
flooding and sedimentation, threatening livelihoods and properties in numerous ways [48].

1.3. The Panchase Region

Panchase is a mountainous region in the middle-hills of Central-Western Nepal between latitudes
28◦12′ N to 28◦18′ N and longitudes 83◦45′ E to 83◦57′ E. The region is located in three districts—Kaski,
Syangja and Parbat (Figure 1). The elevation varies from 742 m above sea level (masl) (outlet of Phewa
Lake, near Pokhara city) to 2523 masl (Panchase Peak) and is characterized by hot, humid summers
and cool-temperate winter seasons [6]. The Panchase hill range extends from the south-west to the
north-west directions, dividing the region into two distinct eastern and western regions. In order to
evaluate the rainfall variability and to establish the IDF relationship of the region, the historical rainfall
data of 11 weather stations were collected from the DHM (Table 1).
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Table 1. Summery statistics of historical daily rainfall (1982–2015), missing values, and homogeneity test of all 11 stations.

Location
Department of Hydrology
and Meteorology (DHM)

Station Number (Nr.)

Altitude
(masl)

Years of
Records

Annual
(mean)

Rainfall
(mm)

Monsoonal
(mean)

Rainfall
(mm)

Nr. of
Storms >

100 mm in
24 h

Nr. of
Storms >

200 mm in
24 h

Mean (Extreme)
Daily Rainfall

(mm/day)

Missing
Values

Homogeneity
(Rejected at 95%)

GHANDRUK 821 1960 1982–2014 3384 2642 47 0 7.5 >5% Yes
LUMLE 814 1740 1982–2014 5504 4681 352 17 15.1 <5% No

KARKI-NETA 613 1720 1982–2014 2543 2047 56 0 7 <5% No
BHADAURE-DEURALI 813 1600 1984–2015 3744 3093 150 7 11.3 <5% No

LAMACHAUR 818 1070 1982–2014 4220 3380 204 10 10.5 >5% Yes
KUSHMA 614 891 1982–2014 2531 2122 39 0 7.3 <5% No
SYANGJA 805 868 1982–2014 2840 2280 101 7 7.8 <5% No

POKHARA-AIRPORT 804 827 1982–2015 3969 3160 189 19 10.9 <5% No
WALLING 826 750 1989–2012 1929 1658 61 6 5.4 <5% No

KHAIRINITAR 815 500 1982–2012 2384 1719 50 1 6.6 <5% No
CHAPAKOT 810 460 1982–2012 1878 1451 59 2 7.8 >5% Yes
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The region is one of the most studied areas in the country [48–53] due to the importance of
Phewa Lake that promotes economic activities and biodiversity. However, the study of rainfall
patterns, their intensity and impact have not been properly addressed yet. The Ecosystem Protecting
Infrastructures and Communities (EPIC) project established and monitored three community-based
rural roadside bioengineering demonstration sites in the region. In addition to capacity building
and policy advocacy, the project combined formal and citizen-science by mobilizing local people
and exploring local knowledge regarding climate extremes, plant species and the importance of
rural access roads for building climate-resilient communities. In order to link local knowledge with
formal science, the project installed three continuous recording meteorological stations in the period
November–February 2014 next to each demonstration site.
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2. Methods

2.1. Data Quality and Rainfall Variability

Historical daily rainfall data of 11 weather stations (Table 1 and Figure 1) in and around Panchase
region with a recording period of above 30 years were obtained from DHM. Only the station in Walling
had a shorter recording period of 22 years. Frequency analysis of rainfall time series requires that
the data are homogeneous and independent [54]. In order to evaluate the data quality, we performed
homogeneity test and evaluated for missing values. Among several methods for the homogeneity
test (see [55]), we implemented simple cumulative deviations of the data from the mean according to
Buishand [54] to check whether the sample data were from the same population (Equations (1)–(3),
Table 1). The cumulative deviations from the mean can be expressed as:

Sk =
k

∑
i=1

(
Xi − X

)
k = 1, 2, . . . . . . , n (1)

where, Xi are the records from the meteorological series X1, X2, . . . . . . Xn and X is the mean. Sk=0
and Sk=n, respectively, are the initial and final value of the series.

Buishand [54] demonstrated cumulative deviations of the mean of rainfall records are often
rescaled dividing Sk by the sample standard deviation (σ). By evaluating the maximum (Q) or the
range (R) of the rescaled cumulative deviations from the mean, the homogeneity of the data series can
be tested, where:

Q = max
0≤k≤n

[
Sk
σx

]
(2)
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R = max
0≤k≤n

(
Sk
σx

)
− min

0≤k≤n

(
Sk
σx

)
(3)

According to Raes et al. [56] high values of Q and R indicate that data of the series are not from
the same population and the fluctuations are not purely random.

The inhomogeneous data series were excluded from the analysis whereas homogeneous data
series containing less than 5% missing values were further evaluated. To complete the data series,
missing values were imputed using the RClimTool [57] and nearest neighborhood method as explained
in XLSTAT [58].

To understand the rainfall variability in the Panchase region, we adopted a generic approach of
analyzing the completed daily rainfall series in terms of the variation of annual monsoonal rain [JJAS],
variation in monsoonal dry days, and extreme events of over 100 mm of rain depth in 24 h. To better
estimate the variation, we grouped the rainfall series according to the hydrological year that starts
from April and focused on monsoonal rainfall depth. The evaluation of historical monsoonal dry/wet
days can be an indicator to understand rainfall variability, as shown by other researchers (e.g., [59]).

2.2. Disaggregation of Daily Rainfall

A general framework to generate synthetic rainfall time series at finer time resolution consistent
with the given coarser resolution, preserving the statistical characteristics (e.g., mean, standard
deviation, lag 1 auto-correlation and percentage of dry days) of both scales, was initially proposed
by Koutsoyiannis [42] and Koutsoyiannis and Manetas [60]. Koutsoyiannis and Onof [44] extended
the methodology to disaggregate daily rainfall into hourly data by coupling with the Bartlett–Lewis
rectangular pulse (BLRP) model [41,44] with adjusting procedure [60]. The original BLRP model
proposed by Rodriguez-Iturbe et al. [61] consists of five parameters (λ, β, γ, η, and µx) and modelled
the rainfall using rectangular pulses and characterized it by the parameters (Figure 2). The general
assumption of the BLRP model as proposed by Rodriguez-Iturbe et al. [61] are:

• The occurrence of random storm events (ti) is assumed to be modelled as a Poisson process with
rate λ and each event i is associated with a random number of cells.

• Each storm event tij, is assumed as a precipitation rectangular pulse with random duration td and
the origin of storm events tij of each cell j occurs following a second Poisson process with rate
β. The inter-arrival time of two subsequent storm events (i.e., successive cells) is independent,
identically distributed and follows an exponential distribution.

• The cell-generation process terminates after time span of νi following the exponential distribution
rate γ. Also, the number of cells per storm contains a geometric distribution of mean µc = 1+ β/γ.

• The random precipitation rectangular pulse duration td is modelled as wij and also follows
exponential distribution with rate η.

• Finally, the cell intensity xij is assumed to be exponentially distributed with mean µx.

According to Rodriguez-Iturbe et al. and Onof and Wheater [62,63] the BLRP model reproduced
the basic statistics but they observed difficulties in reproducing the temporal characteristics. According
to Kossieris et al. [41], in order to improve the model’s flexibility in generating a greater diversity of
rainfalls, Rodriguez-Iturbe et al. [63] modified the original model so that the parameter η is randomly
varied from storm to storm according to gamma distribution with a shape parameter α and rate
parameter ν in such way that the ratios of cell origin rate (β) and storm duration rate (γ) to the
parameter η (i.e., κ = β/η and φ = γ/η) are kept constant. Also, the parameters β and γ are random
variables that follow a gamma distribution with common shape parameter α and rate parameters ν/κ

and ν/φ [41]. Implementing the modified approach, the model consists of six parameters (λ, α, ν, κ, φ

and µx), what we called modified BLRP (MBLRP).
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The successful application of the MBLRP model in different climatic regions was reported by
several researchers (e.g., [38,39,41,44,62,64–71]. The model was successfully verified and implemented
through HyetosMinute, and R-based computer software by Kossieris et al. [41]. According to
Kossieris et al. [41], HyetosMinute is an extended and improved version of the Hyetos model [43] to
disaggregate daily rainfall depth to sub-hourly resolution [72]. HyetosMinute implements the MBLRP
scheme of the Poisson-clusters model and disaggregates daily rainfall, dividing the rainfall depth into
many clusters as sequences of wet days separated by at least one dry day. Also, each sequence is
considered to be an independent event [39,41].

We used the HyetosMinute [72] to generate the required level of rainfall resolution according to
Kossieris et al. [41]. As far as we are aware, this is the first attempt to apply a rainfall disaggregation
approach in order to establish IDF relationships in Nepal and, thus, we evaluated the model parameter
for each station first for the annual and second for the seasonal rainfall series. We focused on available
daily monsoonal rainfall series to parameterize the model adopting a global optimization algorithm.
The algorithm was implemented in a computer package called Evolutionary Annealing-Simplex
(EAS) in R software [41,72] utilizing the historical statistical characteristics in terms of mean, variance,
covariance, and percentage of dry days. While performing the EAS, suitable boundary conditions of
the model parameters were estimated executing iterations, [41] in such a way that the model preserves
the statistical characteristics of the historical rainfall.

The global optimization algorithm generated statistical parameters (λ, α, ν, κ, φ and µx) derived
from the daily available monsoonal rainfall data, and rainfall depth as an input disaggregation was
executed in HyetosMinute [41,72].

2.3. Evaluation of Disaggregation Model

In the case of Nepal, we are facing an inadequate data situation; hence we are limited in our
ability to tune the model. We performed the model evaluation using limited fine-resolution (hourly)
rainfall data recorded within the study region. We implemented the model performance evaluation
scheme according to Kossieris et al. [41]. The EPIC project has established three tipping-bucket type
weather stations within the test area which were calibrated to measure rainfall volume of 0.2 mm
per tip with temporal resolution of an hour. Hourly rainfall data (JJAS 2016) of Gharelu, one of the
test sites of EPIC, were obtained and used to evaluate the disaggregation model performance. For
this purpose, we first aggregated the hourly rainfall to daily series then the series was disaggregated
adopting the procedure discussed in Section 2.2. The statistical characteristics of the aggregated daily
series was calculated and fitted into the EAS model to estimate the parameters (Table 2).
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Table 2. Estimated modified BLRP (MBLRP) parameters to be used in HyetosMinute derived from the
test rainfall data series.

Location Weather Station λ
(day−1) α

ν
(day) κ φ

µx
(mm/day)

Gharelu EPIC:1 1.4805 6.9398 0.1534 1.9181 0.2615 105.98

We calculated the mean (En), variance (Varn) and skewness (Skewn) of the disaggregated series
and compared the characteristic of aggregated series for each of the monsoonal months. Furthermore,
we evaluated the recorded and disaggregated hourly intensity for the test data series for which a
goodness-of-fit (GoF) test was performed.

2.4. Fitting of Probability Distribution Function and Construction of Reference Intensity-Duration-Frequency (IDF)

The probability distribution of time series with daily rainfall data is important in the field of
hydrology and meteorology [73]. It is also important for the construction of IDF curves that requires
the fitting of a probability distribution function (PDF) according to Koutsoyiannis et al. [22]. Several
distribution models (e.g., Gumbel Extreme Value Type I (EV I), Generalized Extreme Value (GEV),
Log Pearson Type III, Beta, Gamma, log-normal, Normal, etc.) are particularly useful for hydrological
and meteorological time-series data analysis [22,74–77]. In Nepal there is currently limited use of
IDF curves/model, and thus no preferred distribution model to be fitted for the rainfall data series.
However, in some flood-frequency studies, the Gumbel Extreme Value Type I and Log-Pearson
Type III were used [52]. In this research, the PDF was evaluated and the best fit was chosen for
which EasyFit statistical software developed by MathWave-Technology [78] was used as employed
in Gamage et al. [79] and Misic [80] and as discussed in Hosking et al. [81], Stedinger et al. [82],
Koutsoyiannis [83,84] and Millington et al. [75]. The homogeneous daily rainfall data of eight weather
stations discussed earlier (see Table 1) were examined by fitting the PDF, in particular GEV and EV I
(Equations (4) and (5)).

Fx(x) = exp

{
−
[
1 + κ

( x
λ
− ψ

)]− 1
κ

}
κ 6= 0 (4)

where, κ > 0, λ > 0 and ψ are shape, scale and location parameters, respectively. For κ = 0, the GEV
distribution turns into the Gumbel distribution [82]:

Fx(x) = exp
[
− exp

(
− x− ψ

λ

)]
(5)

While analyzing the daily time series we recognized that the data contain some degree of
seasonality effects, leading to separation of the annual series into seasonal to better understand
the rainfall characteristics. The PDF for the monsoonal daily and annual extreme time series rainfall
was assessed using the test statistics adopting the Kolmogorov–Smirnov (K-S), Anderson–Darling
(A-D) and chi-squared test (χ2) as illustrated in the EasyFit software [78]. Accordingly, the best-fitted
PDF was chosen and model parameters (κ, λ and ψ) were estimated.

We proposed the construction of reference IDF utilizing the recorded monsoonal daily and
disaggregated hourly extreme rainfall and computed the frequency of precipitation depth PT, (in mm)
for the given rainfall duration td (in hour) with specified return period Tr (in Years) according to
Wilson [85];

IT =
PT
td

(6)

PT = Pave + KTSd (7)
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where, PT is frequency of precipitation depth, Pave is mean rainfall of monsoonal annual series (recorded
daily and disaggregated hourly) extremes, Sd is standard deviation of annual series, and KT is Gumbel
frequency factor for the given duration (Equation (8)):

KT = −
√

6
π

{
0.5772 + ln

[
ln
(

Tr

Tr − 1

)]}
(8)

where, Tr is return period and 0.5772 is Euler’s constant.
From Equations (6)–(8), we determined the rainfall intensities for a given duration and given

return period, what we called IDF scenarios, representing given locations (i.e., stations). These IDF
scenarios were later used as a reference to evaluate station-specific fine resolution IDF curves developed
by implementing the mathematical model proposed by Koutsoyiannis et al. [22] expressed as below:

i =
a(T)
b(d)

(9)

According to Koutsoyiannis et al. [22], the above expression (Equation (9)) can be expressed in
terms of a(T) and b(d) as below (Equations (10) and (11)):

a(T) = λ

{
ψ− ln

[
− ln

(
1− 1

Tr

)]}
(10)

where, λ and ψ are scale and location parameters of the distribution, respectively, and Tr is return
period for the best-fitted PDF (i.e., EV I, see Section 3.4).

b(d) = (td + θ)η (11)

where, td is duration, θ and η are parameters to be estimated (θ > 0 and 0 < η < 1).
In order to evaluate the PDF, three sets of parameters were derived from three different levels of

analysis, respectively, from annual daily extremes, hourly extremes and monsoonal time-series rainfall
depth. The main objective was to establish monsoonal IDF relationship; we focused on the monsoonal
rainfall series and thus the PDF parameters. For this reason, the best-fitted PDF was adopted and
we obtained λ and ψ as discussed in Section 2.4. The empirical parameter θ and η were estimated
adopting Koutsoyiannis et al. [22]. Accordingly, separate IDF curves for fine time resolution were
developed representing each station. In order to estimate the performance of the mathematical model,
the reference IDF curves (td = 1 and 24 h) were fitted to the mathematical model and results were
evaluated using the standard error of prediction (SEP) (Equation (12)) and the GoF test.

SEP =

√√√√{∑
(

Is − Ip
)2

n

}
(12)

where, SEP is the standard error of prediction, Is and Ip are, respectively, the intensities (at given
duration td and return period Tr) observed in the reference IDF and mathematical model predicted
intensities, and n is the number prediction (i.e., return periods).

In order to improve the prediction and better fitting of reference IDF, the mathematical model was
calibrated, adjusting the parameter by minimizing the SEP implemented in SOLVER add-ins available
in MS-EXCEL. This process of analysis and adjustment of the parameters led to the development of
individual station-specific empirical models.

2.5. Estimation of IDF for Ungauged Location

Researchers have demonstrated several ways to estimate extreme storms in terms of IDF for
ungauged locations. Among them logistic and multiple linear regression, spatial interpolation
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techniques and regional frequency analysis (RFA) are particularly in use (e.g., [11,16,22,86]). The
RFA technique was initially introduced for extreme flood estimation, known as the index-flood method
based on L-moments, and is also in use to estimate extreme rainfall events in the homogeneous
region [11,35,82,87]. In this study, the L-moment based RFA method was used to establish regional
IDF relationship and develop the regional empirical IDF model.

Details about the L-moments method can be found in Hosking and Wallis [11]. In brief, the
L-moments are defined as the linear function of the probability-weighted moments (PWMs) explored
by Greenwood et al. [88], with the benefit of offering a description of the shape of a probability
distribution by L-skewness and L-kurtosis. The PWM can be defined as (Equation (13)):

βr = E
[
x{F(x)}r] (13)

The rth L-moment λr is related to the rth PWM, according Hosking [89]:

λr+1 =
r

∑
k=0

βk(−1)
r−k

(r
k)
(

r+k
k

)
(14)

Therefore, the first four L-moments are:

λ1 = β0

λ2 = 2β1 − β0

λ3 = 6β2 − 6β1 + β0

λ4 = 20β3 − 30β2 + 12β1 − β0

The L-moments are independent of units of measurement, called L-moment ratios, and are defined
to the quantities, according Hosking [89]:

τ = λ2/λ1

τ3 = λ3/λ2

τ4 = λ4/λ2

where, τ is L-coefficient of variations (L-Cv), τ3 is L-coefficient of skewness (L-Cs) and τ4 is the
L-coefficient of kurtosis (L-Ck). According to Hosking and Wallis [11], the L-moments can be defined
uniquely and no two distributions can have the same L-moments.

L-moments have superior abilities to conventional moments in discriminating between different
distributions, because the L-moment ratio estimators of location, scale and shape are nearly unbiased,
regardless of the probability distribution from which the observations arise and efficient estimators of
the characteristic of climatic data and of the parameters of the distribution. The L-moment based RFA
consist of the following steps:

• Screening of data through discordancy measure;
• Identification of homogeneous regions;
• Selection of regional distribution and goodness of fit measure;
• Estimation of regional growth curve using index-flood procedure.

2.5.1. Screening of Data and Discordancy Measure

Screening of data comprises evaluation of the data in terms of gross error, homogeneity,
consistency and stationarity. In addition, according to the assumptions of the index-flood method, the
serial and spatial independency of sites is required. For the detection of data quality, Hosking and
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Wallis [11] proposed evaluation of discordancy measures Di as an indicator for a site i. Mathematically,
Di can be expressed as (Equation (15)):

Di =
1
3
(µi − µ)TS−1(µi − µ) (15)

where, µi =
[
t(i), t(i)3 , ti

4

]t
, µ = N−1∑N

i=1 µi and S = 1
N−1 ∑N

i=1(µi − µ)(µi − µ)T are vectors where t, t3

and t4 are L-moment ratios µ is mean of µi. The measure Di indicates how far µi is from the center
of the region relative to the size of the region. Hosking and Wallis [11] recommended that the site is
discordance if Di > 3.

2.5.2. Identification of Homogeneous Region

This is the core part of RFA and based on the grouping of sites to regions in which the samples
are from the same population and consist of the same frequency distributions. We implemented the
L-moment based RFA by dividing the eight rain gauge stations distributed into the heterogeneous
region to two homogeneous sub-regions (eastern region: Lumle, Bhadaure, Pokhara-Airport and
Khairenitar; western region: Kusma, Karki-Neta, Syangja and Walling). The division was made
considering the meteorological and physical characteristics such as mean annual precipitation, altitude,
latitude and distance to the gauging stations to Lake Phewa. According to Hosking and Wallis [11],
heterogeneity measure estimates the degree of heterogeneity in a group of sites and assesses whether
they might reasonably be treated as a homogeneous region. The heterogeneity measure (Equation (16))
compares the observed and simulated dispersion of L-moments for N sites under consideration.

Hj =

(
Vj − µvj

)
σvj

, (j = 1, 2 and 3) (16)

The regions are regarded as “acceptably homogeneous” when Hj < 1, “possibly heterogeneous”
when 1 < Hj < 2, and “definitely heterogeneous” when Hj > 2. The details of the calculation of Hj are
given in Hosking and Wallis [11].

2.5.3. Selection of Regional Distribution and Goodness of Fit

L-moment ratio diagrams were constructed using the unbiased estimators of L-moments according
to Hosking [89]. The curves show the theoretical relationships between L-Skewness (L-Cs) and
L-Kurtosis (L-Ck) of various candidate distributions. In addition, Z-statistics (ZDIST) defined by Hosking
and Wallis [90] compare simulated L-Cs and L-Ck of fitted distribution with the regional average L-Cs

and L-Ck values obtained from observed data. The following relation (Equation (17)) defines the ZDIST:

ZDIST =
(

τDIST
4 − tR

4 + β4

)
/σ4 (17)

where, τDIST
4 is the L-Ck of fitted distribution, and β4 and σ4 simulated regional bias and simulated

regional standard deviation of tR
4 . The simulation was made with the fitted Kappa distribution to

regional L-moments. The fit is regarded as adequate if
∣∣ZDIST

∣∣ is close to zero and acceptable if∣∣ZDIST
∣∣ ≤ 1.64 at a confidence level of 90%.

The satisfactory distributions were obtained as depicted in the
∣∣ZDIST

∣∣ and L-moment ratio
diagram. Among the satisfactory distributions, simpler distributions were chosen, and accordingly
regional growth curves were developed.
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2.5.4. Estimation of Regional Growth Curves using Index-Flood Procedure

The important assumption of the index-flood or the growth curves procedure was that the
frequency distributions of N stations in the homogeneous region are identical apart from a site-specific
scaling factor of the ith site which can be written as (Equation (18)):

Qi(F) = µiq(F), i = 1, 2, . . . . . . N (18)

where, Qi(F) is the precipitation at site i at a given return period, µi is the index-flood [11], N is the
number of sites, and q(F) is the regional growth curve, a dimensionless quantile function common to
the homogeneous site. The index-flood µi also known as the scaling factor is the sample means of the
data at site i. Since, we were concerned with the short duration, extreme precipitation and thus hourly
(extreme) mean precipitation was considered as the index-flood (µi = µi(hr)). The following equations
(Equations (19) and (20)) presents the regional growth curve defined by the quantile function of chosen
distribution (Gen. Logistic (GLO) and GEV) for the western and eastern regions under consideration:

q(F)GLO = ψ +
λ

κ

(
1− (Tr − 1)−κ

)
(19)

q(F)GEV = ψ +
λ

κ

{
1−

[
−LOG

(
1− 1

Tr

)]κ}
(20)

where, λ, ψ and κ are, respectively, the scale, location and shape parameter and Tr is the return period.
Utilizing the above two regional quantile functions together with the µi, we developed a

nominator [a(T)] of Equation (9). For the denominator [b(d) = (td + θ)η] of Equation (9), we made a
use of the reference IDF and solved the following (Equation (21)) relation to obtain two parameters
(θ and η) of b(d) at a given duration (td = 1 and 24 h) by implementing SEP (Equation (12)) as discussed
in Section 2.4:

i =
a(T)
b(d)

=
µi(hr)·q(F)

(td + θ)η (21)

3. Results

3.1. Data Quality and Rainfall Variability

The evaluation of the historical daily rainfall series from the available 11 stations led to the
exclusion of three stations (Chapakot, Nr. 810; Lamachaur, Nr. 818 and Ghandruk, Nr. 821) from
further analysis as these data passed the threshold of inhomogeneity or contained more than five
percent of missing values. Therefore, only eight stations were considered for further analysis. Table 1
presents the characteristics of the rainfall records, with missing values and homogeneity test results.

The daily rainfall series of the eight stations showed that 81.40% of rainfall occurred during the
monsoon season followed by pre-monsoon (11.10%), winter (4.0%) and post-monsoon (3.50%). Out of
the eight stations, three are in the eastern part (Bhadaure-Deurali, Pokhara-Airport and Khairenitar),
four in the western part (Syangja, Walling, Karki-Neta and Kusma) and Lumle on the N-W part of
the Panchase hill range. The mean monsoonal rain of the eastern and western part was 2657 mm and
2027 mm, respectively. The analysis also revealed that over a 30-year period in the eight stations the
total number of storms exceeding 100 mm in 24 h was 998 of which 57 exceeded 200 mm (Figure 3b).
The highest recorded annual total precipitation in the region was 5631 mm in 1984 in Lumle with the
mean monsoonal sum of 4681 mm (Figure 3a) and the recorded maximum rain in 24 h was 357 mm at
Pokhara-Airport. This analysis clearly indicated that the rainfall in Panchase region is highly variable
and the hill range distinctly divided the area into two meteorological regions.
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3.2. Disaggregation of Daily Rainfall Depth

The rationale behind the rainfall disaggregation was to split the daily rainfall into hourly
to sub-hourly [13,39,41,42,44,71,91] when the resolution of the available data is not fine enough.
We derived MBLRP model parameters (Table 3) utilizing the statistical characteristics of historical
monsoonal daily rainfall series for all eight stations and implemented the HyetosMinute software in R.
We observed that the higher skewness value of the daily rainfall series was possibly due to strong
variability in the daily rainfall time series, whereas the annual rainfall time series is rather smoothened
out leading to low skewness, which was expected. The HyetosMinute effectively utilized the MBLRP
model and disaggregated the monsoonal daily rainfall to synthetic hourly series even for long clusters
of wet days separated by at least 1 dry day.

Table 3. Adopted MBLRP model parameters implemented in HyetosMinute derived from the historical
monsoonal (daily) rainfall series of the homogeneous data set of eight stations.

SN Location DHM (Nr.) λ
(day−1) α

ν
(day) κ φ

µx
(mm/day)

Hourly (Extreme)
Mean (mm/h)

1 Lumle 814 2.282 4.039 0.105 1.651 0.246 63.287 38.36
2 Karki-Neta 613 0.939 4.327 0.186 0.251 0.101 83.702 17.4
3 Bhadaure-Deurali 813 1.087 3.511 0.103 1.303 0.1493 55.347 27.89
4 Kusma 614 1.031 9.904 0.47 0.577 0.171 68.614 17.46
5 Syangja 805 0.863 5.797 0.224 1.145 0.201 68.704 18.63
6 Pokhara Airport 804 1.601 4.505 0.304 1.022 0.686 74.703 25.81
7 Walling 826 0.423 6.816 0.2 1.895 0.129 58.762 14.27
8 Khairenitar 815 0.423 6.816 0.2 1.895 0.129 58.762 13.59

3.3. Evaluation of Disaggregation Model

The model discussed in Section 2.2 was evaluated utilizing the short duration hourly rainfall
depth (June–September, 2016) available from the EPIC project. For this purpose, we implemented
the global optimization algorithm and obtained the parameters discussed in Sections 2.3 and 2.4
according to Kossieris et al. [41] by comparing the original and disaggregated rainfall series in terms
of statistical characteristics (e.g., mean, variance and skewness). We summarized the results for each
month demonstrating that the disaggregated series preserved the statistical characteristics of the
recorded rainfall series (Table 4) for the continuous weather station of the EPIC project at Gharelu in
Kaski. However, we noticed the hourly synthetic rainfall series contained small differences in variance
whereas the mean and skewness were similar to that of the original daily series.
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Table 4. Comparison of statistical characteristics of recorded and disaggregated rainfall series;
respectively, the mean, variance and skewness (En, Varn, Skewn and En′ , Varn′ , Skewn′ ).

Month En En′ Varn Varn′ Skewn Skewn′

June 15.41 15.41 461.53 461.52 1.644 1.644
July 46.07 46.07 2459.81 2459.79 1.105 1.105

August 28.50 28.50 1873.35 1873.36 1.831 1.831
September 45.67 45.67 1925.78 1925.77 0.966 0.966

In order to evaluate how well the model disaggregated the extreme intensity of the synthetic
hourly rainfall depth, we compared the recorded and disaggregated extreme intensity for each of the
monsoonal months. The GoF test showed that there was a good agreement among the recorded and
synthetic hourly intensities of the rainfall series (χ2 = 0.932, alpha = 0.05 and degree of freedom = 3).

3.4. Selection of Probability Distribution Function (PDF) and Parameter Estimation

The chosen PDF (EV I and GEV) were evaluated for which K-S, A-D and the chi-squared test
were performed (Table 5). The K-S and A-D statistics ranked the three parameter (κ, ψ and λ) GEV
distribution model better over the EV I, whereas the chi-squared test ranked the two parameter
(ψ and λ) EV I better than the GEV.

Table 5. Probability distribution function (PDF), estimated parameters and test statistics for the
monsoonal daily time series and annual extremes.

S. N. Location PDF

Parameter:
Monsoonal Daily

Time Series
Test Statistics

Parameter:
Monsoonal Annual

Extremes
Test Statistics

κ λ ψ K-S A-D χ2 κ λ ψ K-S A-D χ2

1 Lumle
GEV 0.22 18.59 23.28 0.09 41.79 161.35 0.11 183.24 28.163 0.081 0.274 1.284
EV I - 20.28 31.34 0.148 78.32 138.42 - 185.11 30.59 0.108 0.407 2.744

2 Karki Neta
GEV 0.37 6.84 11.26 0.137 160.39 350.25 −0.3 104.32 26.43 0.105 0.497 1.522
EV I - 7.67 20.97 0.229 183.24 252.72 - 101.87 21.33 0.154 0.875 0.563

3 Bhadaure
Deurali

GEV 0.26 11.64 17.65 0.136 99.08 456.92 0.1 131.91 42.13 0.068 0.202 1.147
EV I - 12.96 25.86 0.192 115.48 187.68 - 134.16 46.13 0.08 0.254 0.214

4 Kusma
GEV 0.35 6.11 10.36 0.144 133.95 460.62 −0.3 106.06 24.33 0.101 0.377 0.313
EV I - 7.12 17.91 0.226 190.73 262.53 - 103.19 18.72 0.104 1.06 0.383

5 Syangja GEV 0.45 5.12 9.83 0.178 182.59 762.43 −0.1 139.27 41.64 0.073 0.246 0.382
EV I - 5.59 22.6 0.278 286.99 329.4 - 139.01 36.81 0.087 0.313 0.199

6
Pokhara
Airport

GEV 0.38 8.92 14.45 0.132 99.27 411.95 0.05 170.89 33.81 0.104 0.574 4.124
EV I - 9.87 27.62 0.238 212.39 276.32 - 171.13 36.1 0.111 0.584 4.118

7 Walling GEV 0.61 2.05 5.47 0.326 356.66 1804.8 0.11 126.09 33.66 0.134 0.372 0.08
EV I - 1.3 21.29 0.323 381.37 586.36 - 127.57 37.86 0.129 0.388 0.873

8 Khairenitar
GEV 0.49 3.46 7.02 0.19 197.91 986.36 0.05 112.62 26.34 0.085 0.263 0.325
EV I - 3.56 18.35 0.297 318.15 520.36 - 113.45 27.68 0.088 0.277 0.643

Stedinger et al. [82] expressed that the EV I distribution is obtained when κ = 0, and the general
shape of GEV turns to EV I where κ < 0.3. In our case, for the monsoonal annual extremes the κ

value was always less than 0.3 (Table 5) whereas this was not fully satisfied for the daily series. Also,
according to Koutsoyiannis et al. [22] the performance of GEV is not very satisfactory with a small
number of samples as in our case. Based on the analysis at various levels (e.g., annual and monsoonal
daily series, annual extremes and disaggregated hourly extremes series), we concluded that in this
case the EV I distribution was better than GEV.

3.5. Construction of Reference and Empirical IDF Relationship

The reference IDF curves were developed for the coarser time resolution of 1 and 24 h duration
utilizing the extreme rainfall from the recorded daily and disaggregated hourly monsoonal rainfall
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series. The frequency of extreme rainfall depth (PT) and dimensionless Gumbel frequency factor
(KT) also known as Gumbel growth curve [92,93] were derived for the eight stations. The results
showed that the frequency of precipitation is highest in the Bhadaure-Deurali station and the lowest
in Khairenitar. Utilizing the method of Wilson [85], we developed the IDF curves for 1 and 24 h
durations, which we called the reference IDF curves. These curves were the means to verify the finer
time resolution IDF relationship.

In order to establish the IDF relationship for finer time resolution, the mathematical model
proposed by Koutsoyiannis et al. [22] was parameterized. Accordingly, the best-fitted PDF parameters
scale (λ) and location (ψ) and other empirical constants θ and η were estimated to be fitted into the
mathematical model discussed in Section 2.4. The estimated parameters are shown in Table 6 which
were used to develop the station-specific mathematical IDF relationship.

Table 6. Adopted parameters derived from Gumbel Extreme Value Type I (EV I) distribution (λ, ψ)
and estimated (θ, η) according to Koutsoyiannis et al. [22] for monsoon season rainfall time series.

SN Location DHM (Nr.) λ ψ θ η

1 Lumle 814 31.335 20.284 21.889 0.943
2 Karki-Neta 613 20.97 7.673 4.226 0.959
3 Bhadaure-Deurali 813 25.857 12.961 8.428 0.988
4 Kusma 614 17.91 7.125 4.38 0.98
5 Syangja 805 22.599 5.589 5.125 0.865
6 Pokhara-Airport 804 27.623 9.866 8.977 0.957
7 Walling 826 21.292 1.298 0.99 0.5
8 Khairenitar 815 18.354 3.564 0.988 0.472

3.6. Evaluation of the IDF Relationship and Development of Empirical Model

The mathematically computed IDF relationship (Section 3.5) was evaluated by fitting reference
IDF scenarios, and SEP and chi-square tests were performed. The test statistics indicated that the
mathematical model overestimated the IDF values for the Lumle (Nr. 814) station for both scenarios
(i.e., 1 and 24 h). Similarly the Walling (Nr. 826) and Bhadaure-Deurali (Nr. 813) stations were poorly
estimated for 1 h duration. The possible reason for this could be either due to the PDF that we chose
or the limitation of the mathematical model where intense and prolonged rainfall occurs. This leads
to the calibration of the model for which we again performed minimization of SEP by adjusting all
four parameters (λ, ψ, θ and η) at a time. This reconstruction of the IDF significantly reduces the SEP
and achieved significant test statistics except in Khairenitar station, for which both SEP and GoF were
increased but yet significant. Table 7 compared the test statistics before and after the calibration of the
mathematical model. Utilizing the calibrated empirical constant (λ′, ψ′, θ′, η′) and fitting them into
Equations (9)–(11), we developed the station-specific empirical IDF model.

Interpretation of the IDF relationship indicated that the eastern part generally received higher
rain than the western part. Variability was also observed in the rainfall intensity from east to west.
Figure 4 shows computed IDF relationship of four stations (Lumle, Pokhara-Airport, Syangja and
Kusma) from the equations shown in Table 8.
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Table 7. Standard error of prediction (SEP) and chi-square test-statistics (alpha = 0.05, test statistics = 12.59
for degree of freedom = 7) before and after the calibration of the mathematical model.

S. N. Location
DHM

Station
Number

(Nr.)

Before Calibration After Calibration

Region
Standard Error
of Prediction

(SEP)

Chi-Square
Test Statistics

(alpha at
0.05 = 12.59)

Standard Error
of Prediction

(SEP)

Chi-square Test
Statistics (alpha at

0.05 = 12.59)

1 h 24 h 1 h 24 h 1 h 24 h 1 h 24 h

1 Lumle 814 6.59 8.22 7.55 24.36 0.10 0.00 0.00 0.00 N-W hill
range

2 Karki-Neta 613 3.19 2.10 1.81 3.55 2.05 0.00 0.72 0.00 Western
part

3 Bhadaure-Deurali 813 6.10 1.95 11.47 4.00 5.70 0.56 0.17 0.05 Eastern
part

4 Kusma 614 0.77 0.28 0.14 0.09 0.29 0.00 0.02 0.00 Western
part

5 Syangja 805 1.27 0.52 0.24 0.21 0.00 0.87 0.00 0.60 Western
part

6 Pokhara-Airport 804 1.37 1.21 0.36 0.97 0.60 0.90 0.06 0.55 Eastern
part

7 Walling 826 9.27 2.21 17.41 3.05 0.87 1.10 0.19 1.02 Western
part

8 Khairenitar 815 4.98 0.44 3.96 0.14 0.64 0.63 6.55 8.77 Eastern
part

Table 8. Station-specific empirical model based on adjusted parameters (λ′, ψ′, θ′, η′).

S. N. Location DHM Nr. Empirical Model

1 Khairenitar 815 i = 5.469
7.047−ln[− ln(1− 1

Tr )]
(td+0.988)0.472

2 Pokhara Airport 804 i = 4.935
7.21−ln[− ln(1− 1

Tr )]
(td+0.85)0.434

3 Bhadaure-Deurali 813 i = 5.953
5.77−ln[− ln(1− 1

Tr )]
(td+0.867)0.465

4 Lumle 814 i = 6.197
6.05−ln[− ln(1− 1

Tr )]
(td+0.764)0.493

5 Kusma 614 i = 4.827
5.568−ln[− ln(1− 1

Tr )]
(td+0.378)0.574

6 Karki-neta 613 i = 7.003
4.775−ln[− ln(1− 1

Tr )]
(td+0.311)0.647

7 Syangja 805 i = 6.122
6.09−ln[− ln(1− 1

Tr )]
(td+0.998)0.501

8 Walling 826 i = 5.096
6.093−ln[− ln(1− 1

Tr )]
(td+0.99)0.5
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Figure 4. Graphical view of IDF relationships derived from the calibrated mathematical model ploted
log-log scale for duration td (td = 5 min, 10 min, 30 min, 60 min, up to 24 h) and return period Tr (Tr = 2,
5, 10, 25, 50, 100 and 200 years); (a) Lumle (Nr. 814), (b) Pokhara-Airport (Nr. 804), (c) Syangja (Nr. 805)
and (d) Kusma (Nr. 614).

The basis of this IDF relationship was the theoretical probabilistic approach of the rainfall data
distribution to compute the parameters of a(T) and the optimization procedure for the parameters
of b(d) that represent the dynamics of the rainfall pattern discussed in Section 2.4 and demonstrated
in Koutsoyiannis et al. [22]. However, there was some adjustment on the empirical constants that
demonstrated better statistical significance and let the IDF curves pass through or much closer to
the reference IDF point at given td and Tr. The reason for such an adjustment was also explained in
Koutsoyiannis et al. [22] and Van de Vyver and Demaree [17] who stated that empirical considerations
are not always consistent with the theoretical probabilistic approach of the IDF relationship.

3.7. Reganalization of IDF for Ungauged Locations

We executed RFA based on L-moments for the heterogeneous regions divided into two
homogeneous regions (eastern region: Lumle, Pokhara-Airport, Bhadaure-Deurali and Khairenitar
and western region: Kusma, Karki-Neta, Syangja and Walling) for which the heterogeneity measure
was evaluated. The heterogeneity measure of the L-moment demonstrated that the sub-regions were
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found to be statistically homogeneous. The estimated heterogeneity measures (H) for the eastern and
western regions were −0.97 and 0.34 respectively. Similarly, the L-moment ratio diagram and ZDIST

demonstrated reasonably acceptable regional distribution functions (Table 9 and Figure 5).

Table 9. List of evaluated distribution indicating the goodness-of-fit (GoF) test statistics (ZDIST < 1.64
to accept the distribution).

S. N. Distribution
ZDIST-Statistics/GoF

Remarks
Eastern Region Western Region

1 Pearson Type III −0.19 −1.31 accept
2 Gen. Normal 0.35 −1.10 accept
3 Gaucho −0.48 −2.37 accept/reject
4 Gen. Extreme Value 0.61 −1.12 accept
5 Gen. Logistic 1.6 0.11 accept
6 Gen. Pareto −1.66 −3.67 reject

For the development of the regional growth curve, we chose one set up based on simple but
statistically acceptable distributions, (1) Gen. Extreme Value (GEV) and (2) Gen. Logistic (GLO)
respectively for the eastern and western region. Utilizing the empirical parameters (Table 10), the
quantile function (Equations (19) and (20)) of the chosen distribution, and hourly (extreme) mean
precipitation (see Table 3) as an index-flood, we established the IDF relation for an hour (td = 1 h) and
a given return period (Tr = 2, 5, 10, 25, 50, 100, 200 years).
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Figure 5. L-moment ratio diagram for six distributions (note the black plus and square block
representing the western region whereas the blue plus and red block is for eastern region).

Table 10. Chosen distribution for their fitted and estimated empirical parameters.

S. N. Distribution
Parameters

θ η RegionLocation
(ψ)

Scale
(λ)

Shape
(κ)

1 Gen. Logistics (GLO) 0.98 0.388 −0.085 0.09 0.39 western
2 Gen. Extreme Value (GEV) 0.877 0.191 −0.06126 0.51 0.40 eastern

By solving Equation (21) and from the regional distribution we obtained the regional parameters
shown in Table 10. We then evaluated the regional IDF with the station-specific reference IDF for
the given duration (td = 1 and 24 h) and return period (Tr = 2, 5, 10, 25, 50, 100 and 200 years) for
which SEP and GOF were performed. The test depicted that the stations Khairenitar (Nr. 815), Lumle
(Nr. 814) and Walling (Nr. 826) demonstrated insignificant IDF values (i.e., the regional model either
overestimated or underestimated the IDF at the given duration (td = 1 h and 24 h)), indicating the
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existence of some degree of heterogeneity, leading to the adjustment/calibration in the empirical
parameters in Table 10. In Table 11, we present the test statistics before and after the adjustment.

Table 11. Standard error of prediction (SEP) and chi-square test-statistics (alpha = 0.05, test statistics = 12.59
for degree of freedom = 7) before and after the calibration of the regional model.

S. N. Location DHM Station
Number (Nr.)

Before Calibration After Calibration

Region
Standard Error
of Prediction

(SEP)

Chi-square
Test Statistics

(alpha at
0.05 = 12.59)

Standard Error
of Prediction

(SEP)

Chi-Square Test
Statistics (alpha at

0.05 = 12.59)

1 h 24 h 1 h 24 h 1 h 24 h 1 h 24 h

1 Khairenitar 815 117.6 24.8 0 0 8.69 1.11 0.19 0.98 eastern

2 Pokhara- Airport 804 1.53 0.37 0.95 0.99
no adjustment

eastern

3 Bhadaure-Deurali 813 6.1 1.95 11.47 4 eastern

4 Lumle 814 37.15 17.43 0 0.01 9.34 0.11 0.16 0.99 eastern

5 Syangja 805 1.27 0.52 0.24 0.84

no adjustment

western

6 Kusma 614 1.37 1.21 0.36 0.86 western

7 Karki-Neta 613 9.27 2.21 17.41 0.85 western

8 Walling 826 37.54 8.52 0 0.20 24.60 3.60 0 0.73 western

The test statistics showed that the two homogeneous sub-regions (eastern and western) can be
divided into further sub-regions such as three sub-regions in the eastern region [eastern sub-region 1:
Khairenitar, eastern sub-region 2: Pokhara-Airport and Bhadaure-Deurali and eastern sub-region 3:
Lumle] and two in the western region [western sub-region 1: Kusma, Karki-Neta and Syangja and
western sub-region and 2: Walling]. Utilizing the best-fitted regional distribution and parameters, we
developed regional IDF formula for the region, as shown in Table 12.

Table 12. L-moment based regional empirical IDF model for the Panchase region.

S. N. Area (Distribution) DHM Nr. Empirical Model Region/Sub-Region

1 Khairenitar (GEV) 815
i =

0.95−9.2
{

1−[−LOG(1− 1
Tr )]

−0.05
}

(td+0.34)0.41 ·µhr
eastern-1

2 Pokhara Airport &
Bhadaure-Deurali (GEV) 804/813

i =
0.95−3.06

{
1−[−LOG(1− 1

Tr )]
−0.062

}
(td+0.5)0.4 ·µhr

eastern-2

3 Lumle (GEV) 814
i =

0.88−3.06
{

1−[−LOG(1− 1
Tr )]

−0.062
}

(td+0.9)0.55 ·µhr
eastern-3

4 Kusma/Karki-Neta &
Syangja (GLO) 614/613/805 i =

0.98−4.47[1−(Tr−1)−0.085]
(td+0.09)0.39 ·µhr western-1

5 Walling (GLO) 826 i =
0.99−14.86[1−(Tr−1)−0.035]

(td+0.01)0.35 ·µhr western-2

td = duration in hour, Tr = return period in year and µhr = hourly (extreme) mean precipitation.

The adjustment of the empirical parameters helps to improve the test statistics except for Walling,
indicating that the distribution we chose was not feasible for the western sub-region2. However,
we could still say that the regional empirical model is useful in evaluating the IDF of rainfall for
other sub-regions.

3.8. Rainfall Intensity in the Region

The computed rainfall intensity of eastern sub-region-3 was found to be the highest in terms of
shorter duration rainfall (i.e., td = 0.5, 1 and 2 h), whereas for the longer duration (i.e., td = 24 h) the
rainfall was relatively intense in western sub-region 2 followed by eastern sub-region 2 and western
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sub-region 2. Overall, rainfall in eastern sub-region 2 was less intense followed by western sub-region
2 for the shorter duration and return periods. Table 13 presents the computed rainfall intensity of some
important return periods (Tr) and duration (td) for example.

Table 13. Example of computed rainfall intensity (mm/h) for some durations and return periods of
regions/sub-regions.

Return Period (Tr in Year)
Duration (td in h)

Region/Sub-Region
0.5 1 2 24

5 31.61 26.10 20.77 7.95
eastern-125 45.48 37.56 29.88 11.44

100 57.85 47.77 38.01 14.55

5 28.89 24.57 20.03 8.04
eastern-225 45.40 38.60 31.47 12.63

100 54.70 46.51 37.92 15.22

5 43.28 36.59 29.00 8.89
eastern-325 55.90 47.25 37.45 11.48

100 67.35 56.93 45.12 13.83

5 32.88 25.88 20.08 7.74
western-125 50.56 39.79 30.87 11.90

100 66.57 52.40 40.65 15.67

5 29.74 23.41 18.40 7.72
western-225 47.10 37.08 29.14 12.23

100 61.62 48.51 38.13 16.01

4. Discussion

Geographically, the Panchase region can be divided into two sub-regions, eastern and western
parts, where the Panchase hill range is sitting in the midway extending N-W to S-E direction. This study
demonstrated that the region can also divide into two parts in terms of rainfall variability. Monsoonal
rainfall over the region is highly variable where the eastern part (i.e., Kaski District) received higher
rain (>3000 mm, except Kahirenitar) than the western part (i.e., Syangja and Parbat Districts), where
mean monsoonal rainfall was below 2300 mm. The geographical setting of the eastern part is relatively
wider in comparison to the western part, which is a valley containing several lakes (e.g., Phewa Lake,
Begnas Lake and Rupa Lake, etc.). Rainfall is a complex process and the complexity is compounded
due to the presence of lakes and high mountain topography. This complex process requires more
detailed analysis considering wind direction; variation in daily temperature, solar radiation, etc. in
order to better understand the rainfall variability.

Use of the historical characteristics of the recorded daily rainfall to parametrize the disaggregation
model in order to generate finer resolution synthetic rainfall series is an important step forward
for data-scarce regions [15,39,41,45]. The method is useful especially for those locations where fine
time-resolution rainfall data is not available, leading to better estimation of the finer resolution rainfall
up to a minute [41]. However, we performed the disaggregation procedure only for time periods of
one hour or more since the possible error accumulation for finer resolution disaggregation is yet to be
known, and has to be investigated (Kossieris, 2017:personal communication).

Although many studies (e.g., [15,37,39–42,44,45,64,94,95] have reported on the generation of
synthetic rainfall series and their effectiveness, we noticed that the attention is less on the intensities.
We observed that the synthetic rainfall intensities were unable to represent the recorded data of a
particular day since the model implements a Poisson process and assumed that the intensity varies
exponentially. In our case, however, the statistics suggest that the synthetic intensities were statistically
significant for the monsoonal months and useful for developing reference IDF scenarios for the study
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region. In order to better understand the synthetic rainfall intensities, a rigorous analysis is required
where long-term fine-resolution time-series rainfall data are available.

The application of the Gumbel frequency factor technique is popular for evaluating frequencies
of rain and flood storms [92,93,96,97]. The technique is also frequently used to establish IDF
relationships [22,93] using fine-resolution rainfall data [22]. In our case, due to inadequate data
resolution we demonstrated the use of synthetic rainfall intensities and developed reference
IDF curves utilizing the technique of Gumbel frequency factor as scenarios to be fitted into the
mathematically-derived empirical IDF model for better performance. In the literature, the use of
scenario IDF computed from the disaggregated and recorded rainfall extremes to establish IDF
relationship is limited. This is also the case for the approach of parameter adjustment in developing
IDF relationships.

The L-moment based RFA method implemented in this study was able to demonstrate that
the study area is heterogeneous in terms of geography and meteorology, which we observed while
constructing the station-specific IDF through Gumbel. This has led to the division of the study area into
sub-regions for the RFA. Application of L-moment ratios and other statistics in identifying reasonably
acceptable distributions of the data set is robust, as was depicted in the results. Therefore, the technique
is useful to better understand the IDF at the ungauged locations and can save computational time
and resources. In this study, we observed that while fitting the regional IDF to the reference IDF, the
chosen distribution slightly underestimated the intensity for the shorter duration and return periods.
However, in most cases the result was statistically significant and useful.

The present study indicated that the Panchase region is highly variable in terms of rainfall amount
and intensity. Short duration and intense monsoonal rain may have different effects on floods and
landslides than less intense but extended duration monsoonal rainfall, respectively noticed in the
western and eastern sub-regions of the area.

This research was carried out with limited data sources in terms of resolution, length of rainfall
records and sparse observational network, which is common in the country. The low-resolution
rainfall data leads to an exploration of alternative approaches of disaggregation to generate synthetic
hourly rainfall. For this reason, the empirical model we proposed for the region shall be used with
caution. Continuous monitoring and recording of finer resolution (e.g., hourly/sub-hourly) rainfall is
important in helping to improve the IDF relationship by improving storm water management. Also, in
order to better understand the regional rainfall trend, non-stationary modelling will be executed and,
accordingly, the regional IDF curves will be developed.

5. Conclusions

This work demonstrated monsoonal rainfall variability over a geographic region in the
Central-Western hills of Nepal and attempted to establish monsoon season IDF relationships where
fine-resolution rainfall data was scarce, common to many developing countries. The reported
methodology and available tools are useful and applicable for ungauged locations within the
study region.

The available daily data were evaluated by grouping them in subsets according to the hydrological
year. This approach was helpful to better understand the rainfall variability and better fitting of PDFs,
as there was a strong seasonal effect on the rainfall in the region where more than 80% of rain occurred
in the four monsoonal months. The Panchase hill geographically divides the region into an eastern
(i.e., Kaski District) and western (i.e., Parbat and Syangja Districts) sub-regions. Analysis of the above
30 years of homogeneous daily rainfall of eight stations in the region showed that the monsoonal
rainfall amount was higher in the eastern part than was recorded in the western part. Also, the
numbers of monsoonal dry days were found to be increased over the period of 30 years in the eastern
part, with the constant amount of monsoonal rain indicating that the rainfall intensity is increased;
whereas in the western part no clear trend was noticed in the annual monsoonal rainfall amount except
in Syangja, where dry days are decreased with an increased number of storms. However, because of
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geographical complexity, in order to better understand the complex rainfall process in the region more
detailed analysis is needed.

The proposed methodology to develop the IDF relationship and empirical model in a data-scare
situation was found to be statistically significant, for which the available daily data were disaggregated
to hourly synthetic series. The recorded daily and disaggregated hourly rainfall data were useful for
computing the reference IDF for all the stations. The reference IDF was effective in evaluating the
mathematically computed station-specific IDF relationships. The mathematical model parameters
(λ, ψ, θ and η) were estimated according to the established methods demonstrated by other researchers
(e.g., [22]). Moreover, the adjustment of the empirical constants performed better statistical significance
of the IDF and demonstrated the usefulness of the model for the ungauged locations within the region.
To regionalize the IDF relationships, the adopted L-moment based RFA method was implemented,
dividing the region into two sub-regions first; later it was noticed that the region contains some degree
of heterogeneity, leading to the production of five sets of empirical models. The models were used to
estimate the regional IDF for the given duration and return periods. Although the regional models
underestimated the rainfall intensity for the shorter duration and return periods while fitting them into
the reference IDF, they were significant in most cases. This procedure can be extended for larger areas
to establish the IDF relationship in the data-scarce situation of Nepal, leading to better management
of storm water, roadside drainage design, management and the mitigation of various hazards-risks
induced by mass movement.

The station-specific (Gumbel) empirical IDF model demonstrated that the short duration (i.e., 5,
10, 30, 60 min) rainfall intensity in the western part was higher than in the eastern part (highest in
Karki-Neta) whereas this was not the case in the regional IDF model. The regional model revealed
that the eastern sub-region 2 (Lumle area) received the intense rain. The reason behind the different
intensities could be the chosen distribution model. In addition, the regional empirical IDF model
generalized the distribution model to be fitted for the region and used the regional mean (extreme)
precipitation leading to variation in the intensities that come from the station-specific IDF model. The
interpretation of the IDF clearly indicated that the Panchase hill range distinctly divides the region
into two meteorological regions. The variability of the rainfall in terms of rain volume and intensity
may have different effects on mass movement, soil erosion and floods in the region, which have to be
investigated for better and effective hazard-risk management.
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